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mechanism in the literature for the metal hydride catalyzed 
isomerism of internal to terminal alkynes. 

The hydrido-alkylidyne species, [ReH2C=CCH2R) (mq)-
(PPh3)2]

+, provide an interesting alternative class of rhenium(VII) 
alkylidynes to the important Schrock complexes, in which imido, 
alkoxide, and/or alkylidene ancillary ligands are also present.19,20 

The mechanism of the formation of the hydrido-alkylidyne 
complexes is under investigation, as are studies exploring the 
synthetic scope of these reactions and the reactivity of the resulting 
complexes. 
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Transition-metal complexes featuring both alkyl and oxo ligands 
command a growing share of attention of organometallic chemists.1 

The chemistry of such oxo-alkyls is relevant to stoichiometric and 
catalytic oxidations of organic molecules mediated by transition 
metals.2 While high-valent chromium reagents have a long history 
of use as oxidants in organic synthesis,3 no chromium alkyls 
containing oxo ligands (Cr=O) have been reported.4 Our ex­
ploration of the reactivity of paramagnetic organochromium 
compounds5 has now yielded several of these molecules. Herein 
we describe the synthesis, structural characterization, and pre-
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Figure 1. Molecular structure of Cp*CrVI(0)2CH3 (2). Selected bond 
distances: Cr-O, 1.605 (3) A; Cr-C(7), 2.054 (5) A. Interatomic angles: 
C(7)-Cr-0, 97.5 ( I ) 0 ; Q-Cr-O8, 109.4 (2)°. 

Figure 2. Molecular structure of Cp*Crv(0)(CH3)2 (3). Selected bond 
distances (values in parentheses refer to the second molecule in the 
asymmetric unit): Cr-C(I), 2.044 (6) A (2.041 (6) A); Cr-C(2), 2.042 
(5) A (2.045 (5) A); Cr-O, 1.579 (3) A (1.581 (3) A). Interatomic 
angles: C(l)-Cr-C(2), 90.8 (2)" (89.2 (2)°); C(I)-Cr-O, 100.4 (2)° 
(101.9 (2)°); C(2)-Cr-0, 101.3 (2)" (101.0 (2)°). 

Scheme I 

liminary reactivity studies of oxo-alkyls of chromium in its highest 
oxidation states (V and VI). 

Admission of an excess (> 1.5 equiv) of dry dioxygen to cooled 
(-78 0C) ether solutions of Cp*Crm(py)(CH3)2 (1) (Cp* = 
7j5-pentamethylcyclopentadienyl, py = pyridine), followed by slow 
warming to room temperature, induced a sequence of color changes 
(from brown through green to red). Evaporation of the solvent, 
extraction of the solid residue with pentane, and recrystallization 
from the same solvent yielded dark red crystals of Cp*CrVI-
(O)2CH3 (2) in 40% yield (Scheme I).6 Sharp NMR resonances 
in the expected range attested to the diamagnetic nature of 2, 

(6) 2: 1H NMR (C6D6) S 1.53 (s, 15 H), 1.35 (s, 3 H); 13C NMR (C6D6) 
6 120.1, 25.6, 10.5; IR (KBr) 3015 (m), 2978 (sh), 2953 (sh), 2920 (s), 2857 
(m), 1443 (m), 1375 (s) 1358 (m), 1121 (m), 951 (m, sh), 914 (s), 804 (m) 
cm"1; UV-vis (THF) 472 nm (t 1630), 350 (4310), 233 (14280); MS (70 eV) 
234 (M+, 28), 202 (52), 134 (77) 119 (100); HRMS calcd for CnH18CrO2 
234.0712, found 234.0715; mp 93 0C. 
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consistent with its d0 electronic configuration. The dioxo moiety 
gave rise to two bands in the IR spectrum, a strong one (vsym) at 
914 cm"1 and a weaker shoulder (vasym) at 951 cm""1. 

Final proof of the structure was obtained by X-ray crystal­
lography; the result is shown in Figure I.7 2 is a monomeric 
half-sandwich and possesses a crystallographic mirror plane. 
Although the pentamethylcyclopentadienyl ligand is clearly IJ5-
bonded, its endocyclic C-C bonds show some bond length al­
ternation toward a localized diene, and the Cr-C distances range 
from 2.19 to 2.37 A. This distortion toward an V structure is 
probably a manifestation of the strong trans influence of the oxo 
ligand. The Cr-Cmethyi bond (2.05 A) is only slightly shorter than 
comparable bonds in chromium(III) derivatives (2.09 A on av­
erage),5" and the two symmetry-equivalent Cr-O distances (1.61 
A) fall squarely within the range found for known chromium oxo 
complexes (1.51—1.65 A).8 

Reaction of 1 with 0.5 equiv of O2 under similar reaction 
conditions produced a dark green solution. Evaporation of the 
solvent yielded a solid residue from which a light green compound 
could be sublimed (room temperature, ca. 10"4 Torr) in very low 
yield. The same compound is produced in higher yield (52%) by 
reaction of 1 with trimethylamine TV-oxide (Scheme I). Spec­
troscopic and analytical data of this compound were consistent 
with the formula Cp*Crv(0)(CH3)2 (3).9 In particular, the 
compound exhibited one strong band (VCT=0 976 cm"1) in the IR 
spectrum, which was shifted to 935 cm"1 upon use of 18O2 in the 
synthesis. The magnetic susceptibility of 3 was measured in the 
temperature interval 4-290 K using a Faraday balance. The 
complex is paramagnetic, and the data were fitted with a Cu­
rie-Weiss expression.10 The effective magnetic moment (corrected 
for diamagnetism, no detectable TIP) of 3 at 285 K is 1.76 MB> 
consistent with the d1 configuration of pentavalent chromium. 

The result of an X-ray structure determination of 3 is depicted 
in Figure 2." The crystal contains two independent—albeit 
chemically equivalent—molecules in the asymmetric unit; they 
do not contain any crystallographically imposed symmetry ele­
ments. By comparison with 2, the Cp* ligands of 3 exhibit no 
significant C-C bond length alternation, and the Cr-C^ distances 
span a slightly smaller range. The average of the four Cr-Cmethyl 
distances (2.043 (6) A) does not differ significantly from that of 
2, while the Cr-O bonds of 3 are slightly shorter (average of 1.580 
(3) A). 

Mixing equal amounts of 1 and 3 led to the formation of a dark 
green compound accompanied by liberation of pyridine (detected 
by 1H NMR spectroscopy). On the basis of the spectroscopic data, 
we tentatively assign the structure [Cp*CrIV(CH3)2]2(M2-0) (4) 
to this paramagnetic complex.12 Considering the great oxidizing 

(7) Crystal data for 2: CnH18CrO2, orthorhombic, Pnma; a = 12.6097 
(23), A= 12.6518 (26), c = 7.4018 (13) A; V= 1180.9 (3) A3, Z = 4; R(F) 
= 3.77%. Despite the similarity in a and b, photographic and diffraction 
experiments determined that the highest symmetry was orthorhombic. Two 
octants of data (2360 reflections, max 20 = 50°) were merged, yielding 913 
observed (4aF0) data. All non-hydrogen atoms were refined anisotropically, 
and hydrogen positions were included as idealized contributions. 

(8) Nugent, W. A.; Mayer, J. M. Metal-Ligand Multiple Bonds; Wiley: 
New York, 1988; p 163. 
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1379 (m), 1134 (m), 1105 (m), 1024 (w), 976 (s), 802 (w), 513 (m); UV-vis 
(THF) 773 nm (« 40), 328 (1350), 236 (3240); MS (70 eV) 233 (M+, 2), 218 
(19), 203(94), 185 (100); mp 48 0C. Anal. Calcd for C12H2,CrO: C, 61.78; 
H, 9.07. Found: C, 61.92; H, 9.23. Preliminary ESR studies (X-band) of 
3 showed a septet (due to hyperfine coupling to the six equivalent methyl 
protons with g = 2.000347 and a('H) = 6.3 G). 

(10) The susceptibility data was fitted with a Curie-Weiss expression (xm 
= [CI(T - $)] + TIP). C = 0.398, 6 = -3.3 K, TIP = -7.3 X 10"5 emu. 

(11) Crystal data for 3: C12H21CrO, monoclinic, P2Jc; a = 14.438 (3), 
b = 14.188(3), c = 13.499(3) A; 0= 114.97(2)°; V= 2506.8 (9) A3, Z = 
8, R(F) = 5.14%. Preliminary photographic and diffraction experiments, 
which were performed due to similarity in the values of a and b, eliminated 
symmetries higher than monoclinic. Two octants of data (4888 reflections, 
max 26 = 50°) yielded 3278 observed (3<rF„) data. All non-hydrogen atoms 
were refined anisotropically, and hydrogen positions were included as idealized 
contributions. 

(12) 4: 1H NMR (C6D6) d -14.1 (br s, Cp*); IR (KBr) 2947 (s), 2907 
(s), 2880 (s), 1487 (w) 1425 (m), 1377 (s), 1107 (m), 1020 (m), 978 (w), 937 
(m), 804 (w), 696 (w) 502 (m); mp 97-99 0C. 

power of chromium in its highest oxidation states, the considerable 
stability of the complexes described above is remarkable. C6D6 
solutions of 2 decompose only slowly at room temperature (t1/2 
ca. 10 days), yielding mostly diamagnetic [Cp*Crv(0)(CH3)]2-
(M2-O) (5).13 The same compound is produced in a rapid reaction 
of 2 with triphenylphosphine. Chromium-based catalysts are used 
for the polymerization of small olefins;14 however, neither 2 nor 
3 showed any reaction with ethylene at room temperature and 
ambient pressure. The metal-carbon bond of 2 is not cleaved by 
methanol, indicating the highly covalent nature of the bond. 

These results underscore the emerging notion that strongly 
ir-donating oxo ligands greatly stabilize organometallic compounds 
in unusually high formal oxidation states and render their met­
al-carbon bonds nonpolar. It is our belief that the complexes 
described herein are only the tip of an iceberg laden with fasci­
nating high-valent organochromium compounds. We are currently 
exploring this possibility. 
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There are so far very few definitive demonstrations of biradical 
contribution to the ground state of individual closed-shell organic 
molecules.1 Tschitschibabin's hydrocarbon (I)2 is one example, 
although opinions differ as to whether the compound exists as a 
singlet, a triplet, or a mixture of the two spin states.3"25 The 
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